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Introduction

We first begin by reviewing a few definitions. Throughout these
notes, G will denote a group. A (left) G-module is an abelian group
on which G acts on by additive maps on the left. Let Homg (A, B) be
the set of maps from A to B. This gives us a category G-mod of left
G-modules. * 2.

Definition 1. A trivial G-module is an abelian group A of G that acts
trivially. This means that forall g € Gand a € A

ga=a

If we consider an abelian group as a trivial G—module this gives us
an exact functor from Ab to G-mod.

Definition 2. Let A be a G-mod. Then the submodule of fixed points is
given by

AS={ac A:ga=aforall x € G}

Then, one can see that AG is a trivial G-module. Going further, it is
the unique maximal G-trivial submodule of A.

Definition 3. Suppose that ¢ : A — Bisa G-map and leta € A°C.
Then, we have that since ¢ is a G—map, ¢(ax) = x¢(a) = ¢(a), meaning
that ¢(a) € BC. Define © := @| 4c. The fixed-point functor Fix® :z¢
Mod — 7 Mod is defined by FixC(A) = AC and Fix®(¢) = ¢°.

Thus, one can see that Fix® is an additive functor.
Proposition 1. If Z is viewed as a G—trivial module, then
Fix® = Homg(Z, —)
3
Proof. We define the following map
T4 :Homy(Z,A) — AS  fs f(1)

Now, we check that f(1) € BS. Suppose that x € G, then this means
that x(f(1)) = f(1-x) = f(1) since Z is G—trivial. Now it remains
to show that 74 is an isomorphism. To do this, we show that 74 has
an inverse. Let a € AC. Then, there will exist a Z—map, f, such that

* This category can be identified with
the category ZG-mod over the integral
group ring ZG.

2t can also be identified with the
functor category AbE of functors from
the category G to the category Ab of
abelian groups

3In particular, this implies that Fix is
left exact.



fa(1) = a. Note that we have that xa = a for all x € G, meaning that
we have a well-defined G—map and f, gives us our inverse to T4.

Homg(Z, A) — M, AG
! ‘
Homg (Z, B) i BC
4 O

Definitions and Examples

Now that we have defined the fixed-point functor, we are ready to
define the cohomology groups.

Definition 4. Suppose that G is a group and A is a G—module. Then, the
cohomology groups of G with coefficients in A are

H"(G,K) := Exty-(Z,K)
5 where Z. is viewed as a trivial G—module. ©
Given this definition we now give some examples.

Example 1. If G = 1 is the trivial group, AG = 1. Given that the higher

derived functors of an exact functor vanishes we have that H" (1, A) = 0 for
n#0.7

We will be going over a non-trivial example later on.

Since Ext(Z, —) is given by the G— free projective resolution of Z we
want to start our understanding by mapping ZG — G.

Proposition 2. There is a G-exact sequence

0 g ZG < Z 0

where € : ZG — Z is given by Y ycq MxX — Yy ing Mx. This is a ring
map and a G-map, and ker e = G is a two-sided ideal in Z.G.

Proof. Take the functor F : Groups — Rings assigning each group G
an integral group ring ZG. Then, the trivial group homomorphism

¢ : G — {1} induces a ring map F¢ : ZG — Z{1} = . In par-
ticular, this implies that Fp = € : )} myx — ) my. since € is a ring
homomorphism, this gives us the desired result. 8 O

Definition 5. The map € : ZG — Z given by Y myx — Y my is called the
augmentation and G = ker € is called the augmentation ideal.

[Need to fill out this section a little more]
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4Indeed, the given diagram commutes.

5 From this definition we have that
HO(G,A) = AC

¢ Note that we have defined H" as
the right derived functors of FixC. To
review these definitions, refer to the
notes in Week 7.

7 In some textbooks, the n is denoted by
*

8 This functor is defined by assigning
to each group G its integral group ring
ZG and to each group homomorphism
¢ : G — H the ring homomorphism
F(¢) : ZG — ZH, defined by }_ m,x —
Lmxg(x)
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Cohomology Group of a Finite Cyclic Group

We are now well-equipped to calculate the cohomology groups of a
finite cyclic group.

Lemma 1. Let G = (x) be a finite cyclic group of order k and let D =
x—Tland N=1+x+x*+ ..+ x*"L Then

D D

ZG ZG N ZG ZG € Z 0

is a G-free resolution of Z where the maps alternated between multiplication
by D and multiplication by N.

Proof. Given that Z is commutative, we have that D and N are G-
maps. To show that this gives us a G-free resolution, we want to
show that it is a complex and that it is exact. We first show that it is a
complex. To do so note that DN = ND = x¥ — 1 = 0. Letting u € ZG
we have that

e(Du) =e((x—1)u) =e(x—1)e(u) =0

and so we have a complex. Now all that remains is to show that this
is exact. We know that € is surjective. Suppose that kere = G = imD.
So at the zeroth step, we have exactness. We first show that ker D C
imN. If u = Z::Ol ml-xi, then

(x = D) = (mg_q — mo) + (mo — my)x + ...+ (my_p — my_1)x*"!

If u € kerD, then Du = (x — 1)u =0, and my_q = mg = my... = my_».
Therefore, 1 = myN € imN. Then, we want to show that ker N C
imD. If u = Zi‘(:_ol m;x' € ker N, then 0 = e(Nu) = e(N)e(u) = ke(u),
soe(u) = Zi.‘:_& m; = 0 so that

u = —D(mg + (mo +m)x + ... + (mg + ... + m_1)x*~1) € imD

Theorem 1. Let G be a finite cyclic group. If A is a G-module, define
NA ={a € A:Na=0}.Then, foralln > 1,
HY(G,A) = A®
H*1(G,A) =Ny A/DA
H*'(G,A) = A°/NA
Proof. The idea of this proof lies in applying Homg(Z, —) to the
resolution in the previous Lemma and take homology. In more detail,
this means that if dy,, 11 = D and dp,, = N for n > 0. Then
ker N* =y A imN* = NA kerD* = A® imD* = DA

where N* and D* are the induced maps. The formulas follow from
the definition H" (G, A) = ker dy, 1 /imd*m. O
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