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Introduction

We first begin by reviewing a few definitions. Throughout these
notes, G will denote a group. A (left) G-module is an abelian group
on which G acts on by additive maps on the left. Let HomG(A, B) be
the set of maps from A to B. This gives us a category G-mod of left
G-modules. 1 2. 1 This category can be identified with

the category ZG-mod over the integral
group ring ZG.
2 It can also be identified with the
functor category AbG of functors from
the category G to the category Ab of
abelian groups

Definition 1. A trivial G-module is an abelian group A of G that acts
trivially. This means that for all g ∈ G and a ∈ A

ga = a

If we consider an abelian group as a trivial G−module this gives us
an exact functor from Ab to G-mod.

Definition 2. Let A be a G-mod. Then the submodule of fixed points is
given by

AG = {a ∈ A : ga = a for all x ∈ G}

Then, one can see that AG is a trivial G-module. Going further, it is
the unique maximal G-trivial submodule of A.

Definition 3. Suppose that φ : A → B is a G-map and let a ∈ AG.
Then, we have that since φ is a G−map, φ(ax) = xφ(a) = φ(a), meaning
that φ(a) ∈ BG. Define φG := φ|AG . The fixed-point functor FixG :ZG

Mod →ZG Mod is defined by FixG(A) = AG and FixG(φ) = φG.

Thus, one can see that FixG is an additive functor.

Proposition 1. If Z is viewed as a G−trivial module, then

FixG ∼= HomG(Z,−)

3 3 In particular, this implies that FixG is
left exact.

Proof. We define the following map

τA : HomA(Z, A) → AG f 7→ f (1)

Now, we check that f (1) ∈ BG. Suppose that x ∈ G, then this means
that x( f (1)) = f (1 · x) = f (1) since Z is G−trivial. Now it remains
to show that τA is an isomorphism. To do this, we show that τA has
an inverse. Let a ∈ AG. Then, there will exist a Z−map, fa such that
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fa(1) = a. Note that we have that xa = a for all x ∈ G, meaning that
we have a well-defined G−map and fa gives us our inverse to τA.

HomG(Z, A) AG

HomG(Z, B) BG

τA

φ∗ φG

τB

4 4 Indeed, the given diagram commutes.

Definitions and Examples

Now that we have defined the fixed-point functor, we are ready to
define the cohomology groups.

Definition 4. Suppose that G is a group and A is a G−module. Then, the
cohomology groups of G with coefficients in A are

Hn(G, K) := Extn
ZG(Z, K)

5 where Z is viewed as a trivial G−module. 6 5 From this definition we have that
H0(G, A) = AG

6 Note that we have defined Hn as
the right derived functors of FixG . To
review these definitions, refer to the
notes in Week 7.

Given this definition we now give some examples.

Example 1. If G = 1 is the trivial group, AG = 1. Given that the higher
derived functors of an exact functor vanishes we have that Hn(1, A) = 0 for
n ̸= 0. 7 7 In some textbooks, the n is denoted by

∗
We will be going over a non-trivial example later on.

Since Ext(Z,−) is given by the G− free projective resolution of Z we
want to start our understanding by mapping ZG → G.

Proposition 2. There is a G-exact sequence

0 G ZG Z 0ϵ

where ϵ : ZG → Z is given by ∑x∈G mxx 7→ ∑x inG mx. This is a ring
map and a G-map, and ker ϵ = G is a two-sided ideal in ZG.

Proof. Take the functor F : Groups → Rings assigning each group G
an integral group ring ZG. Then, the trivial group homomorphism
φ : G → {1} induces a ring map Fφ : ZG → Z{1} = . In par-
ticular, this implies that Fφ = ϵ : ∑ mxx 7→ ∑ mx. since ϵ is a ring
homomorphism, this gives us the desired result. 8 8 This functor is defined by assigning

to each group G its integral group ring
ZG and to each group homomorphism
φ : G → H the ring homomorphism
F(φ) : ZG → ZH, defined by ∑ mxx 7→
∑ mx φ(x)

Definition 5. The map ϵ : ZG → Z given by ∑ mxx 7→ ∑ mx is called the
augmentation and G = ker ϵ is called the augmentation ideal.

[Need to fill out this section a little more]
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Cohomology Group of a Finite Cyclic Group

We are now well-equipped to calculate the cohomology groups of a
finite cyclic group.

Lemma 1. Let G = ⟨x⟩ be a finite cyclic group of order k and let D =

x − 1 and N = 1 + x + x2 + ... + xk−1. Then

ZG ZG ZG ZG Z 0D N D ϵ

is a G-free resolution of Z where the maps alternated between multiplication
by D and multiplication by N.

Proof. Given that Z is commutative, we have that D and N are G-
maps. To show that this gives us a G-free resolution, we want to
show that it is a complex and that it is exact. We first show that it is a
complex. To do so note that DN = ND = xk − 1 = 0. Letting u ∈ ZG
we have that

ϵ(Du) = ϵ((x − 1)u) = ϵ(x − 1)ϵ(u) = 0

and so we have a complex. Now all that remains is to show that this
is exact. We know that ϵ is surjective. Suppose that ker ϵ = G = imD.
So at the zeroth step, we have exactness. We first show that ker D ⊆
imN. If u = ∑k−1

i=0 mixi, then

(x − 1)u = (mk−1 − m0) + (m0 − m1)x + ... + (mk−2 − mk−1)xk−1

If u ∈ ker D, then Du = (x − 1)u = 0, and mk−1 = m0 = m1... = mk−2.
Therefore, u = m0N ∈ imN. Then, we want to show that ker N ⊆
imD. If u = ∑k−1

i=0 mixi ∈ ker N, then 0 = ϵ(Nu) = ϵ(N)ϵ(u) = kϵ(u),
so ϵ(u) = ∑k−1

i=0 mi = 0 so that

u = −D(m0 + (m0 + m1)x + ... + (m0 + ... + mk−1)xk−1) ∈ imD

Theorem 1. Let G be a finite cyclic group. If A is a G-module, define

N A = {a ∈ A : Na = 0}. Then, for all n ≥ 1,

H0(G, A) = AG

H2n−1(G, A) =N A/DA

H2n(G, A) = AG/NA

Proof. The idea of this proof lies in applying HomG(Z,−) to the
resolution in the previous Lemma and take homology. In more detail,
this means that if d2n+1 = D and d2n = N for n ≥ 0. Then

ker N∗ =N A imN∗ = NA ker D∗ = AG imD∗ = DA

where N∗ and D∗ are the induced maps. The formulas follow from
the definition Hm(G, A) = ker d∗m+1/imd∗m.
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